Putting Innovation to Work: The ABCs of Tech Transfer
By Cheryl Cobb

Technology transfer and licensing by universities has come a long way since the passing of the Bayh-Dole Act 30 years ago, which allowed academic institutions to own and commercialize technologies developed with federal funds. Since then, many academic institutions, including Auburn University, have established technology transfer offices or have designated a manager of marketing and licensing technology invented at the university… and with good reason.

The protection of research-based intellectual property (IP) and its subsequent movement into the marketplace not only brings improved products to the general public but also creates jobs related to the development and sale of those products. One such product was created by Auburn aerospace engineering faculty member Roy Hartfield and graduate student Christoph Burger. They recently designed and developed a device that allows for optimized positioning of a propeller blade without the need for the heavy or complex systems that typically accompany variable pitch propellers used on unmanned aerial vehicles (UAV). This technology translates into more power and better fuel efficiency, which in turn improves performance and range.

Hartfield and Burger did not have a company in mind for their propeller device but wanted to make it available through licensing. Auburn’s Office of Technology Transfer (OTT) worked with them to facilitate their application to patent the technology and license it to Aerovate, a Canadian company that creates aerial solutions for civilian markets, including geophysical exploration and surveillance. The company is currently testing an operational prototype.

“This device is based on a straightforward physical concept and offers the prospect for improving the performance of a class of aerospace vehicles of high current interest,” says Hartfield. “The opportunity to fundamentally improve the human condition through your work, if only in a small way, is truly a gift of fulfillment.”

The university also benefits through recognition for the discoveries, which in turn helps to attract and retain talented faculty, as well as entice corporate research support. Inventors receive a significant portion of the revenues from licensing activities, while some is used to support further research and education initiatives. A recent report from the National Institute of Standards and Technology estimates that new technologies account for half of our nation’s gross domestic product. Many of these technologies are born in our nation’s research universities.

“The Auburn University Office of Technology Transfer is implementing a new business plan that focuses on communication, marketing and commercializing IP developed by faculty and students,” explains John Weete, assistant vice president for technology transfer and commercialization. “The OTT works with faculty to move research-based IP into the marketplace by creating a bridge between the university and established companies and entrepreneurs to develop early-stage technology. We do it while still maintaining the core values of publication and sharing of information, research results, materials and know-how. It is a myth that one must either publish or patent; the fact is that a researcher or inventor can do both without jeopardizing either.”

Another engineering transfer effort that is beginning to bear fruit is IntraMicron, an Auburn spin-off formed in 2001 that traces its origin to the Department of Chemical Engineering. In exchange for a license to the portfolio of microfibrous materials patents developed by chemical engineering professor Bruce Tatarchuk and his graduate students, Auburn receives a royalty on commercial sales.

IntraMicron currently occupies 16,000 square feet of manufacturing space in the Auburn Industrial Park and employs six full-time employees, as well as a number of contract support service providers.

“It has taken a while, but IntraMicron is finally turning a profit and has enough orders to keep it busy for the next three years,” says Tatarchuk. The firm’s specialized microfibrous technologies are currently being used in advanced aerospace materials, as well as in research and development programs focused on producing the next generation of filtration products. Applications include chemical filters for personal protection devices such as those worn by firemen and for air flow in large buildings, as well as for sensitive fuel cells.

“IntraMicron enjoys a close working relationship with OTT and has a number of exciting joint projects in the planning and implementation stages,” continues Tatarchuk. “While required to be on different sides of the profit/non-profit fence, IntraMicron and OTT are both committed to the same end goal – economic development in the community through the harvesting and conversion of cutting edge research and development activities into value creation and high-tech jobs.”

Page 2 >>

Spirit Store
War Eagle Motorsports
Mechanical Eagle
Facebook
Twitter



Engineering E-Mag is a service of the Samuel Ginn College of Engineering. This newsletter is distributed to alumni and friends throughout the year.
To read archived copies visit: http://www.eng.auburn.edu/.

To learn more about the Samuel Ginn College of Engineering, visit our Web site at:http://www.eng.auburn.edu/.

QUESTIONS about Engineering E-Mag may be directed to Michael Stone, Webmaster for the Samuel Ginn College of Engineering, at webmaster@eng.auburn.edu

Auburn University is an equal opportunity educational institution/employer.